Search results for "Quantum dynamic"

showing 10 items of 129 documents

A quantum dynamics study of the benzopyran ring opening guided by laser pulses

2014

Abstract The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of str…

010304 chemical physicsChemistryQuantum dynamicsDegrees of freedom (physics and chemistry)General Physics and AstronomyHartreeConical intersection010402 general chemistry01 natural sciencesPotential energyMolecular physics0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrysymbols.namesakeStark effectComputational chemistry0103 physical sciences[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistrysymbolsPhysical and Theoretical ChemistryGround stateAdiabatic processComputingMilieux_MISCELLANEOUS
researchProduct

Quantum dynamics of 16O in collision with ortho- and para-17O17O

2017

Abstract We report full quantum dynamical observables, such as integral and differential cross sections and rate constants, for the 16 O +  17 O 17 O reactive collision process. We particularly emphasize the effect coming from the nonzero nuclear spin of 17 O, leading to two nuclear spin isomers of 34 O 2 , ortho- and para- 34 O 2 which can be studied independently and behave differently. A comparison with the 16 O +  18 O 18 O collision is given. We find that processes involving 17 O 17 O are always faster than with 18 O 18 O.

010304 chemical physicsChemistryQuantum dynamicsGeneral Physics and AstronomyObservable010402 general chemistryCollision01 natural sciences0104 chemical sciencesReaction rate constant0103 physical sciencesKinetic isotope effectPhysical chemistryPhysical and Theoretical ChemistryAtomic physicsQuantumChemical Physics Letters
researchProduct

Quantum Dynamics of the 17O + 32O2 Collision Process

2016

We report full quantum integral and differential cross sections and rate constants for the 17O + 32O2 reactive process. This constitutes the first quantum scattering study of the 17O16O16O system. We emphasize the comparison with the 18O + 32O2 collision in close connection to the mass-independent fractionation (hereafter referred to as MIF) puzzle for ozone in atmospheric chemistry. We find similar general trends in the cross sections and rate constants for both rare isotopes, but we note some singular behaviors peculiar to the use of 17O isotope, particularly at the lowest collision energies.

010304 chemical physicsIsotopeChemistryQuantum dynamics010402 general chemistryCollision01 natural sciences0104 chemical sciencesConnection (mathematics)Reaction rate constantAtmospheric chemistry0103 physical sciencesScattering theoryPhysical and Theoretical ChemistryAtomic physicsQuantumThe Journal of Physical Chemistry A
researchProduct

TIME-MINIMAL CONTROL OF DISSIPATIVE TWO-LEVEL QUANTUM SYSTEMS: THE INTEGRABLE CASE

2009

The objective of this article is to apply recent developments in geometric optimal control to analyze the time minimum control problem of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. We focus our analysis on the case where the extremal Hamiltonian is integrable.

0209 industrial biotechnologyControl and OptimizationIntegrable systemQuantum dynamics[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences02 engineering and technology01 natural sciences020901 industrial engineering & automation[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesQuantum operation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsMathematical PhysicsMathematicsMathematical physicsLindblad equationApplied MathematicsMathematical analysis[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]16. Peace & justice49K15 70Q05Quantum processDissipative systemQuantum algorithm[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Hamiltonian (control theory)
researchProduct

The Dynamical Problem for a Non Self-adjoint Hamiltonian

2012

After a compact overview of the standard mathematical presentations of the formalism of quantum mechanics using the language of C*- algebras and/or the language of Hilbert spaces we turn attention to the possible use of the language of Krein spaces.I n the context of the so-called three-Hilbert-space scenario involving the so-called PT-symmetric or quasi- Hermitian quantum models a few recent results are reviewed from this point of view, with particular focus on the quantum dynamics in the Schrodinger and Heisenberg representations.

AlgebraQuantum probabilityTheoretical physicsQuantization (physics)symbols.namesakeQuantum dynamicsQuantum operationsymbolsMethod of quantum characteristicsSupersymmetric quantum mechanicsQuantum statistical mechanicsSchrödinger's catMathematics
researchProduct

Quantum state engineering using one-dimensional discrete-time quantum walks

2017

Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing …

Angular momentumComputer scienceQuantum dynamicsQuantum technologiesFOS: Physical sciencesQuantum simulator02 engineering and technologyTopologySpace (mathematics)01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Open quantum systemQuantum statequantum informationQuantum mechanics0103 physical sciencesExperimental platformquantum walksQuantum walk010306 general physicsPhysicsQuantum networkQuantum PhysicsHigh-dimensional systemsQuantum state preparationbusiness.industryOrbital angular momentumQuantum-state engineeringArbitrary superpositionOne-way quantum computer021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsArbitrary quantum stateQuantum technologyDiscrete time and continuous timeLine (geometry)PhotonicsQuantum Physics (quant-ph)0210 nano-technologybusiness
researchProduct

Grid methods and Hilbert space basis for simulations of quantum dynamics

1999

We discuss spatial grid methods adapted to the structure of Hilbert spaces, used to simulate quantum mechanical systems. We review the construction of Finite Basis Representation (FBR) and the Discrete Variable Representation (DVR). A mixed representation (pseudo-spectral method) is constructed through a quadrature relation linking both bases.

Basis (linear algebra)Dynamical systems theoryQuantum dynamicsHilbert spaceGeneral Physics and AstronomyTopologyGridQuadrature (mathematics)symbols.namesakeHardware and ArchitecturesymbolsRepresentation (mathematics)QuantumMathematicsComputer Physics Communications
researchProduct

(H, ρ)-induced dynamics and the quantum game of life

2017

Abstract We propose an extended version of quantum dynamics for a certain system S , whose evolution is ruled by a Hamiltonian H, its initial conditions, and a suitable set ρ of rules, acting repeatedly on S . The resulting dynamics is not necessarily periodic or quasi-periodic, as one could imagine for conservative systems with a finite number of degrees of freedom. In fact, it may have quite different behaviors depending on the explicit forms of H, ρ as well as on the initial conditions. After a general discussion on this (H, ρ)-induced dynamics, we apply our general ideas to extend the classical game of life, and we analyze several aspects of this extension.

Cellular automataPure mathematicsQuantum dynamicsFermionic operator01 natural sciences010305 fluids & plasmasModeling and simulationSpectral analysisymbols.namesakeQuantum games0103 physical sciencesSpectral analysis010306 general physicsSettore MAT/07 - Fisica MatematicaFinite setGame of lifeMathematicsMathematical physicsGame of lifeApplied MathematicsCellular automata Fermionic operators Game of life Heisenberg-like dynamics Spectral analysis Modeling and Simulation Applied MathematicsHeisenberg-like dynamicCellular automatonModeling and SimulationsymbolsHamiltonian (quantum mechanics)Applied Mathematical Modelling
researchProduct

Quantum dynamics of 16O + 36O2 and 18O + 32O2 exchange reactions

2015

We present quantum dynamical investigations of (16)O + (36)O2 and (18)O + (32)O2 exchange reactions using a time-independent quantum mechanical method and an accurate global potential energy surface of ozone [Dawes et al., J. Chem. Phys. 135, 081102 (2011)]. Initial state-selected integral cross sections, rate constants, and Boltzmann averaged thermal rate constants are obtained and compared with earlier experimental and theoretical results. The computed thermal rate constants for the oxygen exchange reactions exhibit a negative temperature dependence, as found experimentally. They are in better agreement with the experiments than the previous studies on the same reactions.

ChemistryQuantum dynamicsGeneral Physics and AstronomyThermodynamicsPotential energyChemical kineticssymbols.namesakeReaction rate constantPotential energy surfaceBoltzmann constantsymbolsPhysical chemistryPhysical and Theoretical ChemistryNegative temperatureQuantumThe Journal of Chemical Physics
researchProduct

Quantum effects in the dynamics of intensity-dependent two-mode two-photon models of radiation—matter interaction

1996

Abstract We study the two-photon interaction of a two-state localized system with two modes of a quantized electromagnetic or elastic field. Assuming the coupling strength and the atom-field detuning depending on the mode populations, we find that the quantum atomic dynamics manifests nonclassical features related to the specific nonlinear model investigated.

Condensed Matter::Quantum GasesPhysicsNuclear and High Energy PhysicsQuantum dynamicsDynamics (mechanics)Mode (statistics)RadiationTwo-photon excitation microscopyQuantum mechanicsPhysics::Atomic PhysicsNonclassical lightInstrumentationQuantumIntensity (heat transfer)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct